HI96784-25 NITRITI SCALA MEDIA

PROCEDURA

ZEROLettura della fiala del bianco

<u>NOTE</u>

* I risultati dell'analisi sono espressi in $\mu g/L$ di azoto nitroso (NO_2^--N). Sugli strumenti HI801 e su HI83399, premere il tasto Chem Frm (Formula chimica) per convertire il valore in $\mu g/L$ di nitriti (NO_2^-) e nitrito di sodio ($NaNO_2$)

FATTORE DI CONVERSIONE

Per convertire da unità di azoto nitroso (NO_2^--N) a nitriti (NO_2^-) si deve moltiplicare il valore per 3,29.

Per convertire da unità di nitriti (NO₂⁻) ad azoto nitroso (NO₂⁻N) dividere il valore per 3,29.

HI96784-25 NITRITI SCALA MEDIA

SPECIFICHE TECNICHE

Scala da 0.00 a 6.00 mg/l (come NO_2^--N) Accuratezza ± 0.10 mg/L $\pm 3\%$ della lettura a 25°C

Lunghezza d'onda 525 nm Metodo Diazotazione

AVVERTENZE

- Conservare le fiale non utilizzate nel loro contenitore, in un luogo fresco e al buio.
- In caso di campioni sporchi, si raccomanda di filtrare con filtro a $0.45 \,\mu \mathrm{m}$

INTERFERENZE

Il pH del campione deve essere compreso tra 2.0 e 3.0 pH dopo l'aggiunta dei reagenti.

Interferenze possono essere causate da:

- Cloro, Sodio, Solfati superiori a 4000 mg/L
- Potassio superiore a 3000 mg/L
- Ammonio, Calcio, Nitrati, Fosfati superiori a 2000 mg/L
- Magnesio superiore a 1000 mg/L
- Rame superiore a 200 mg/L
- Manganese, Zinco superiore a 50 mg/L
- Nichel superiore a 20 mg/L
- Ferro superiore 10 mg/L

APPLICAZIONI

Acque reflue, acqua potabile, acque superficiali, acque minerali, acque sotterranee.

SIGNIFICATO E USO

I nitriti sono uno stato di ossidazione intermedio dell'azoto, sia nell'ossidazione dell'ammoniaca a nitrato che nella riduzione del nitrato. Sia l'ossidazione che la riduzione possono verificarsi in impianti di trattamento delle acque reflue, sistemi di distribuzione dell'acqua e acque naturali. I nitriti possono entrare in un sistema di approvvigionamento idrico attraverso il loro uso come inibitori di corrosione nelle acque di processo. I nitriti cambiano la normale forma dell'emoglobina, che trasporta l'ossigeno attraverso il sangue al resto del corpo, in una forma chiamata metaemoglobina che non riesce più a trasportare ossigeno.

PRINCIPIO

I nitriti sono determinati attraverso la formazione di un colorante azoico rosso porpora prodotto in soluzione acida accoppiando la sulfanilamide diazotizzata con ammine aromatiche.